Calculation of the L-shaped pipe compensator

Initial data

$\mathrm{dx}=16 \mathrm{~mm}$ - thermal elongation along the X axis
$\mathrm{dy}=-4 \mathrm{~mm}$ - thermal expansion along the Y axis
$h=1,00$ - geometric characteristic of pipe flexibility
$k=1,00$ - elbow flexibility factor
Lax $=12 \mathrm{~m}$ - reduced length of the compensator axis
Xo $=31 \mathrm{~m}$ - distance from the axis of the pipeline to the elastic center along the X axis
$Y o=181 \mathrm{~m}$ - distance from the axis of the pipeline to the elastic center along the Y axis
Ix $=5 \mathrm{~m} 3$ - central moment of inertia about the X-axis
Iy $=133 \mathrm{~m} 3$ - central moment of inertia about the Y -axis
Ixy $=-13 \mathrm{~m} 3$ - central centrifugal moment of inertia about the X and Y axes
$P x=820 N$ - elastic deformation force directed along the X axis
Py $=-85 \mathrm{~N}$ - elastic deformation force directed along the Y axis
$\mathrm{Ma}=1536 \mathrm{~N}$ - maximum bending moment at point A
$M_{B}=-298 \mathrm{~N}$ - maximum bending moment at point B
Mc $=-522 \mathrm{~N}$ - maximum bending moment at point C

79 MPa* bending compensation stress at point A
-15 MPa* bending compensation stress at point B
-27 MPa* bending compensation stress at point C

